Research Elaborated

January 22, 2019

Dr. Tomi Kauppinen, Docent, PhD
Aalto University School of Science, Finland

For my bio, the context and my activities please visit http://kauppinen.net/tomi. The bibliography file¹ and source file² of this document are available online. Please also check simple interactive visualizations of publications, both using MIT Simile³ and Bibtexbrowser ⁴.

Publications briefly elaborated (almost all of them)

- Recently we have studied the use of web, online and networked environments in following ways:
 - Increasing Information Transparency through Web Maps - essentially communicating about relevant issues of information visualizations to improve transparency [13]
 - Experimenting how a global collaboration can support learning, feeling of responsibility and team forming in a global product design marathon [103]
 - Learning music online via searching by playing benefits from structured representations of music [45]
 - We have developed a theoretical model for the associative nature of conference participation [99].
 - In Aalto Online Learning project⁵ [68, 89], strategic initiative of the Aalto University, we have developed, delivered, experimented and evaluated new digital tools and online materials in a wide set of themes covering: augmented and virtual reality, online interactive textbooks, automatic assessment, video production, electronic exams and online social interaction. We have also proposed novel concepts to create communities of practice for teachers to jointly create online and blended learning settings. As we live and learn in the era of online videos it is also vital to support teachers’ competencies in producing educational videos (see [21]).
 - Related to this, is it possible to understand learners’ activities by letting them to create a network of information as they see connections between different learning topics? How can we let them express their feelings about learning and record these in the same information networks? (see [83]).

¹http://kauppinen.net/tomi/publications-tomi-kauppinen.bib
²http://kauppinen.net/tomi/publications-tomi-kauppinen-elaborated.tex
³http://kauppinen.net/tomi/gallery/
⁵http://onlinelearning.aalto.fi/
• **Linked Science—Interconnecting Scientific Assets**

 - See our original article called Linked Open Science [53] and its extension as a book chapter [52].
 - About applying Linked Science approach see our work on sharing remote sensing data [55]—especially Linked Brazilian Amazon Data [56], and our work on managing scientific findings [5].
 - For making sense of publication data see spatial@linkedscience [57] and for visually interacting with Linked Spatiotemporal Data with gestures see [7]. Another way to explore linked scientific data is to create analysis and animations on the fly with our ELBAR explorer [90] as a *hypothesis generation step for further research*.
 - Our work related work on Linked Universities is reported in a paper about the Linked Open Data University of Muenster (LODUM), see [79] and in papers about Linked Open Aalto, especially using the idea for visual exploration of data [3], for instance to understand interorganizational collaboration [26] via visual analytics.
 - Further on, we have used text mining techniques to understand and plot spatial aboutness of publications [4]. The idea is to thus to facilitate directing of new research to regions yet unexplored. Linking of scientific assets together, and to space and time should create grounds for Linked Earth, where all important information about the Earth is interconnected and can be explored at different levels [51].

• As a result of ifgi 20 years anniversary Think Tank we prepared an article asking “How can Geoinformatics help address global challenges?” [84]. Our vision for Geographic Information Observatories was outlined in [42]. Related to this, we have studied the role of contextual information [43] as lenses to observe the data universe. We have studied Volunteered Geographic Information (VGI) to understand and advance the role of affordances [96], modeling of provenance [80] [81] [97], spatial data mining to assess classification of VGI features [2] and modeling of trust and reputation [11].

• Related to our VGI efforts we have employed bayesian networks for crowdsensing and to support situation awareness [22]. Crowdsensing is interesting also for understanding local phenomena. For this we have created a platform for gathering and visualizing user experiences about spaces (indoor such as office buildings) via mobile and web interfaces [66]. With reasoning about these human observations we can support understanding of spaces and how people consider about them in different contexts [92]. With these we have argued that human computation is essential for understanding phenomena and supporting to improve cities. In order to prepare grounds for this we have conducted a survey of people movement analytics studies in the context of smart cities [86].

• Our work on making higher level conceptualizations from raw data is documented in papers about modeling geosensor observations [14] [15]. Similar task has been in our work on creating a usable information layer about the deforestation in the Brazilian Amazon see [54] [12], and particularly about using Linked Data technologies to share remote sensing

6http://linkedscience.org
7http://linkedscience.org/spatial
observation data [55]. A related work is the methodology for crowdsourcing Linked Spatiotemporal Data after an earthquake and interacting with it with an user interface see [91] [49].

- Our studies have argued that **Linked Data** introduces a paradigm shift for **Geographic Information Science** [85] and that it thus is a core component of the Future Spatial Data Infrastructure [16].

- **Digital Cultural Heritage** has been one of the main themes, especially during my PhD dissertation [47]. This has led to new methods for using Fuzzy Sets to model imprecise temporal periods [69] according to how users cognitively rank the relevances. Another related research direction has been to reason about changes [70]. One practical result has been SMARTMUSEUM [75, 8, 94, 93] which matches user profiles with the available semantic annotations thus bridging the cognitive gap between humans and machines. In our studies we did data mining to analyze annotation co-occurrences [65] and spatial data mining for finding out interesting relations between places [73].

- The core result of my PhD [47] was **The Finnish Spatiotemporal Ontology (SAPO)**:
 - First mention about SAPO was made in [61]
 - SAPO was built using different methods and components. These include
 * reasoning about changes (such as merges and splits) in administrative regions [64] [63] [62], and
 * a vocabulary for collecting changes supported by a method for creating the temporal parts of regions [77].
 - The benefits of using SAPO is shown via application examples for
 * managing digital cultural heritage content [70],
 * for query expansion [102], and
 * for semantic autocompletion [98].
 - An evaluation in an information retrieval task shows [70] that by using SAPO the recall increases considerably without loss in precision.
 - A book chapter gives an overview of the research related to SAPO [36].

- We have also used ontologies to integrate health information with geoinformation [100] [20].

- Back in my PhD period I worked on The Finnish Geo-ontology (SUO) [25] [59] [60] and particularly on using geospatial ontologies in CultureSampo [70] [57] [30] [31] [30] [32] [33] [34] [35] and on developing spatiotemporal ontologies and services [59] [29] in the FinnONTO project [39] [95] [38] [37] [87] [101].

- I have also edited proceedings in the above fields, these include SEMSCI2017 [18] TSTIP2015 [1, 10], SAFE2015 [9], JOINT SSA-SMILE 2014 [17], VISUAL2014 [40], LISC 2011 [71], LISC 2012 [72], LISC 2013 [19], LISC 2014 [105], LISC 2015 [82], Geographic Information Observatories 2014 [41], GIScience in the Big Data Age 2012 [44], Developments in Artificial Intelligence [27], Web Intelligence [28] and XML Finland [23].
• Further on, as an application of my research I have published vocabulary specifications online. These vocabularies are CHANGE [48], TEACH [76], EXPERIENCE [67], LSC [6] and TISC [50].

• Finally, I have authored and co-authored papers also in Finnish, for instance about Aalto Online Learning [88], the Finnish Spatiotemporal Ontology SAPO [104], Geospatial Ontologies [24], Sensor Web [58], Semantic Web [74] and Pattern Recognition [46].

Last updated: January 22, 2019

References

[5] Alkyoni Baglatzi and Tomi Kauppinen. Managing and representing scientific findings about the environment. In Demos and Posters of the 18th International Conference on Knowledge Engineering and Knowledge Management (EKAW2012), National University of Ireland, Galway, Ireland, October 2012.

[10] Heather Burte, Tomi Kauppinen, and Mary Hegarty. Teaching spatial thinking from interdisciplinary perspectives workshop (introduction). In Proceedings of the Workshop on Teaching Spatial Thinking from Interdisciplinary Perspectives co-located with Conference on Spatial Information Theory XII (COSIT 2015), Santa Fe, New Mexico, USA, 2016.

[58] Tomi Kauppinen and Anusuriya Devaraju. Älyä havaintojen yhdistämiseen, 2013.

[82] Carsten Kessler, Jun Zhao, Marieke van Erp, Tomi Kauppinen, Jacco van Ossenbruggen, and Willem Robert van Hage, editors. Proceedings of the 5th Workshop on Linked Science 2015

